Industrial

Elevator Control System 

  • Watch time - 3:13
    Take Nuvoton NuMaker-IIoT-NUC980 running Linux as the platform and learn how to develop various functions. Watch this video, you will learn how to control GPIO to blink the LED on NuMaker-IIoT-NUC980 board. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-nuc980-iiot Contact us: SalesSupport@nuvoton.com
  • Training  Tool  Learning  Watch time - 3:24
    Hello everyone I am Chris, the Field Application Engineer from Nuvoton Technology. Today I will introduce the programming and debugging tool, called NuLink-Gang, and NuLink2-Pro. And I will show you in what kind of situation you can utilize the tools. During system development, Nuvoton provides three IDE interfaces: KEIL, IAR, and NuEclipse for user to develop source code. When programming the Chip, Nuvoton provides ICP programming Tool in PC and the debugger Nu-Link2-Pro for users to perform debugging and programming function. User who uses all of the Nuvoton Nu-Maker boards series can develop through the Nu-Link2-Me debugger and programmer; it’s attached to the board. During the mass-production stage, there are 2 modes for programming the target chip. One is online programming and the other is offline programming. At first, in online programming mode, user can use ICP programming Tool and a Nu-Link2-Pro to program a target chip. Besides, if it needs to program several chips at one times, the Nu-Link Command Tool supports program multiple develop board by several Nu-Link2-Pro. Nu-Link2-Pro also supports drag-and-drop Flash programming. User can intuitively complete the programming action. Nu-Link2-Pro In offline programming mode, user can pre-store the programming file in SPI flash, USB flash drive, or SD card. When user wants to program the target chip, pressing the programming button on Nu-Link2-Pro to complete the programming action. If it needs a large number of ICs to be programming, it recommends using the Nu-Link-Gang programmer. Nu-Link-Gang programmer can perform offline programming on four different chips at a time, significantly increasing the programming efficiency. Besides, Nu-Link-Gang programmer can also use the control bus to connect with an automatic programming machine for automatic programming. In the system upgrade, Nu-Link2-Pro also provides five standard communication interfaces such as SPI, I2C, UART, RS485, and CAN for transmission, which is convenient for users to upgrade the system. That’s all for the introduction of Nuvoton’s programming and debugging tool, NuLink-Gang, and NuLink2-Pro. Thank you for watching it. If you want to know more details, please contact us! Thank you. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Watch time - 5:11
    Loudspeakers are highly nonlinear and time-variant systems. Signal distortion, heating, aging, climate and other external influences limit the maximum level and the quality of the reproduced sound. This video shows how Nuvoton smart amplifier can greatly improve the speaker performance and the sound quality by offering mechanical & thermal protection, automatic system alignment, active compensation of transducer nonlinearities, and active stabilization of the voice coil rest position based on the Klippel Controlled Sound (KCS) technology.
  • Watch time - 5:10
    Loudspeakers are highly nonlinear and time-variant systems. Signal distortion, heating, aging, climate and other external influences limit the maximum level and the quality of the reproduced sound. This video shows how Nuvoton smart amplifier can greatly improve the speaker performance and the sound quality by offering mechanical & thermal protection, automatic system alignment, active compensation of transducer nonlinearities, and active stabilization of the voice coil rest position based on the Klippel Controlled Sound (KCS) technology.
  • Training  Tool  Learning  Watch time - 4:32
    Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to control the temperature and humidity sensor with Mbed OS on NuMaker-IoT-M487 development board. For this tutorial, we choose the “Thermo 6 Click” board. It is a mikroBUS board with a MAX31875 sensor. It is easy to install on NuMaker-IoT-M487 board because it has a mikroBUS connector. The part of control code refer from community, it is easy and quick to be integrated into real application. Open Chrome browser, and enter the URL https://ide.mbed.com to use the Mbed Online Compiler. After log in, make sure that NuMaker-IoT-M487 board already selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board. Click the “New” on the left of menu bar, a “Create new program” window will be displayed. You can see that the Platform has been set to NuMaker-IoT-M487. In the Template, select the "NuMaker Thermo-Sensor MAX31875 " for this tutorial. Then click OK. Now you can see that the sample code has loaded on the page. The sample code includes the MAX31875 control from community, declares an I2C object used on NuMaker-IoT-M487’s mikroBUS and a sensor object with the I2C object. Get the temperature value then print it. No modification needed, just click “Compile” to build the sample code. It is in compiling, please wait a moment. Then you can see the last message is “Success!” after compile completed. The browser downloads the binary firmware file directly after a successful compiling. It will be saved in a default download folder or the folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”. Now is the time to install the Thermo 6 Click temperature and humidity sensor board on the mikroBUS, please pay attention to the correct orientation of the board. Then we connect the NuMaker-IoT-M487 USB port to your computer and make sure the onboard LED lights up. Let’s back to the folder you just download the binary firmware file (NuMaker-mbed-Sensor-MAX31875.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the tutorial, the “Nu-Link Virtual Com Port” is COMx. Then use your favorite terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate And no flow control settings. Then “Open” it. You can see the current temperature in Celsius and Fahrenheit printed on terminal. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to get more information, please contact us at SalesSupport@nuvoton.com - For more information, please visit: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en
  • Training  Tool  Learning  Watch time - 3:51
    Hello everyone, I am the principal engineer of Nuvoton Technology, Morgan. Today, I will show you how to use Mbed OS on the NuMaker-IoT-M487 development board to control LED and buttons. First, open Chrome browser, enter the URL https://ide.mbed.com. Please make sure that NuMaker-IoT-M487 board already selected in the upper right corner after you log in. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board. Then click the “New” on the upper left, a “Create new program” window will be displayed. You can see that the Platform has been set to NuMaker-IoT-M487. In the Template field, select the "NuMaker GPIO Interrupt with Debounce Setting" for this tutorial. Then click OK. Now you can see that the sample code has loaded on the page. Click on “main.cpp”, this sample code uses SW2 button for demonstration. Click on “Compile” to build it. It is in compiling, please wait a moment. Then you can see a lot of messages at the bottom of the page. The last message is “Success!” The browser will download the binary firmware file directly after a successful compiling. It will be saved in a default download folder or the folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”. Then we have to connect the NuMaker-IoT-M487 USB port to your computer and make sure the onboard LED lights up. Let’s head back to the download folder where you can see the binary firmware file (NuMaker-mbed-GPIO-Interrupt.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. Next step is to press the SW2 button on the board to toggle LED. You can see the reaction of each press. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to know more information, please contact us at SalesSupport@nuvoton.com - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #Tool #Training #Learning #Intermediate #en
  • Application  Learning  Watch time - 4:54
    The NDA102 DALI digital lighting control solution is based on Digital Addressable Lighting Interface (DALI) technology developed by Digital illumination interface alliance (DiiA). This solution includes DALI protocol libraries from Nuvoton and have been tested. Nuvoton is a DiiA associate member and has successful experiences for DALI product certification. #Application #Learning #Basic #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/tw/ contact us: SalesSupport@nuvoton.com
  • Product  Learning  Watch time - 4:26
    NUC980 Series Microprocessor is a solution designed for industrial control and industrial IoT applications, such as gateway, serial server, remote control unit, plug and play data collector and IoT development platforms. NUC980 series embedded with an ARM9 core supports Linux, FreeRTOS and Non-OS Board Supporting Package. By using MCP technology, NUC980 series supports up to 128 MB DRAM. Not only can NUC980 simplify your hardware design, but help your product time to market. A less-layered PCB and a reduced PCB size can lower the BOM cost. NUC980 supports 2 High Speed and 6 Full Speed USB Host controllers that can be used for a replaceable module due to the plug and play feature of USB interface. Other interfaces include 10 UART, 4 I2C, 3 SPI, 4 CAN BUS, and 2 Camera sensor interface. Designers can use these interfaces to collect or convert the data needed. NUC980 features AES, RSA, SHA and ECC hardware crypto accelerator for CPU offloading. This crypto engine can be applied at data transfer, identification, and key exchange.Nuvoton also provides IoT protocols like HTTP, HTTPS, MQTT, CoAP, openSSL to help customers accomplish a security IoT platform easily. Nuvoton NUC980 adopts MCP technology supporting up to 128 MB DRAM. Developers can design a secure IoT product fast and convenient with the help of the hardware crypto engine. Next, I will introduce related development platforms. NuMaker NUC980 Serial Server Board is suitable for applications like serial server or serial to Ethernet gateways. This develop board includes 2 10/100 Ethernet ports, 8 UART ports, 1 MicroSD Slot, 2 USB ports and 16MB SPI NOR Flash. NuMaker NUC980 USB developer board is suitable for data collection applications. This board includes 1 10/100 Ethernet port, 8 USB ports, 5 UART ports, and 128 MB NAND Flash. NuMaker NUC980 Industrial IOT developer board is suitable for IOT applications. This board includes 1 10/100 Ethernet Port, 2 USB ports, microphone input, earphone output, 128 MB SPI NAND Flash and an Arduino Compatible interface. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: http://direct.nuvoton.com/arm9-mpus/ contact us: SalesSupport@nuvoton.com #Product #Learning #Basic #en
  • Watch time - 4:18
    This reference design is based on NuMicro M480 series which control a 2” OLED display. It provides an easy method for a graphical user interface (GUI) with emWin library. As you can see, the microcontroller controls the 2-inch OLED screen and GIF files can be played on it. The M480 series runs up to 192 MHz with 512 KB embedded Flash memory and 160 KB embedded SRAM. The high-performance MCU decodes GIF motion graphics smoothly. There are three major features about this reference design: First: We use the Nuvoton M480 high-performance microcontroller to control the OLED through high-speed SPI to showcase dynamic effects. Second: This solution has built-in GIF decoding and various font libraries. If there are other font requirements, you can load other fonts through the Nuvoton font conversion tool, and use the emWin Library to develop a high-quality user interface quickly. Third: It can be applied to products requiring display functions, such as e-sports motherboards, which can dynamically display temperature, the speed of the fan and the status of the hard disk. The OLED device has a 2-inch OLED screen with a resolution of 256*64. There is an SD card slot underneath, which obviously is for data storage and the storage status is shown on the OLED screen. The right side, there is a high-speed USB for PC connection as a flash drive. A headphone jack is on the left, I’m sure you all know how it works. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Contact us: SalesSupport@nuvoton.com 本方案使用 NuMicro M480 高效能 M4 微控制器,搭配 emWin library 進行 GUI 圖像化人機介面設計,將結果顯示在 2” OLED 上。NuMicro M480 系列微控制器是新唐的最新產品,透過這個系列產品高達 192 MHz 的強大運算能力和多達 160 KB 的 SRAM,並且搭配 2 吋 OLED 螢幕,來達到流暢地解碼及播放 GIF 動態影像,那這個方案包含了三大重點: 第一點:我們使用了新唐 M480 高效能微控制器,透過高速 SPI 控制 OLED 來顯示炫麗的動態效果 第二點:本方案已內建 GIF 解碼和多種字型的 Library,如果有其他字型需求,可以透過新唐字型轉換工具載入其他字庫,再加上 emWin Library 的使用,快速開發完成高質感使用者介面。 第三點:本方案可以應用於有顯示功能需求的產品,如電競主機板,可以高效地動態顯示溫度、風扇轉速和硬碟狀態等 - 更多產品資訊,請至新唐科技網站 https://bit.ly/3hVdcmC 聯絡我們:SalesSupport@nuvoton.com
  • Watch time - 3:12
    本方案使用 NuMicro M480 高效能 M4 微控制器,搭配 emWin library 進行 GUI 圖像化人機介面設計,將結果顯示在 2” OLED 上。NuMicro M480 系列微控制器是新唐的最新產品,透過這個系列產品高達 192 MHz 的強大運算能力和多達 160 KB 的 SRAM,並且搭配 2 吋 OLED 螢幕,來達到流暢地解碼及播放 GIF 動態影像,那這個方案包含了三大重點: 第一點:我們使用了新唐 M480 高效能微控制器,透過高速 SPI 控制 OLED 來顯示炫麗的動態效果 第二點:本方案已內建 GIF 解碼和多種字型的 Library,如果有其他字型需求,可以透過新唐字型轉換工具載入其他字庫,再加上 emWin Library 的使用,快速開發完成高質感使用者介面。 第三點:本方案可以應用於有顯示功能需求的產品,如電競主機板,可以高效地動態顯示溫度、風扇轉速和硬碟狀態等 - 更多產品資訊,請至新唐科技網站 https://bit.ly/3hVdcmC 聯絡我們:SalesSupport@nuvoton.com ---- Today we are going to introduce our reference design OLED Display with GIF Format Decode featuring the NuMicro M480 series microcontroller. As you can see, the microcontroller controls the 2-inch OLED screen and GIF files can be played on it. The M480 series runs up to 192 MHz with 512 KB embedded Flash memory and 160 KB embedded SRAM. The high-performance MCU decodes GIF motion graphics smoothly. There are three major features about this reference design: First: We use the Nuvoton M480 high-performance microcontroller to control the OLED through high-speed SPI to showcase dynamic effects. Second: This solution has built-in GIF decoding and various font libraries. If there are other font requirements, you can load other fonts through the Nuvoton font conversion tool, and use the emWin Library to develop a high-quality user interface quickly. Third: It can be applied to products requiring display functions, such as e-sports motherboards, which can dynamically display temperature, the speed of the fan and the status of the hard disk. The OLED device has a 2-inch OLED screen with a resolution of 256*64. There is an SD card slot underneath, which obviously is for data storage and the storage status is shown on the OLED screen. The right side, there is a high-speed USB for PC connection as a flash drive. A headphone jack is on the left, I’m sure you all know how it works.