Search
Search Results
SearchIntermediate ,
find 46 items
- Sort by
- Most recent
- Popularity
Training
Tool
Learning
Watch time - 5:40
Hello, everyone! I'm Chris, Field Application Engineer from Nuvoton Technology.
Today, I will introduce you how to design NuMicro M251/ M252 application circuit.
Let's start with the power application circuit of M251/M252.
The external power should add 10uF and 0.1uF decoupling capacitors, and the capacitor should be placed close to the source of the external power supply.
Before the external power enters the VDD/VDDIO/VBAT of the IC, 0.1uF bypass capacitors should be added separately, and the capacitors should be placed close to the IC.
Before the external power enters the AVDD, the bead should be connected in series for filtering, and then 1uF, 0.1uF, and 0.01uF bypass capacitors should be added. The bead and capacitors should be placed close to the IC.
Before connecting AVDD to VREF, first, connect the bead in series for filtering, and then add 2.2uF, 1uF, and 470pF bypass capacitors. The bead and capacitors should be placed close to the IC.
A 1uF bypass capacitor should be added to the internal LDO power supply of the IC, and the capacitor should be placed close to the IC.
AVSS and VSS should be connected in series with a bead for filtering.
USB_VBUS should be connected in series with a 10-ohm resistor to enhance the ability of USB to resist EFT interference.
USB_D+ and USB_D- should be connected in series with 27-ohm resistors for impedance matching.
USB_VCC33_CAP needs to add a 1uF bypass capacitor.
ICE_DAT and ICE_CLK should be connected to 100K ohm pull-up resistors.
The two ends of the high-speed and low-speed crystal oscillators should be connected with an equivalent capacitance of 20pF to VSS.
I2C_SCL and I2C_SDA should be connected to 4.7K ohm pull-up resistors.
nRESET should be connected to a 10K ohm pull-up resistor and a 10 uF capacitor to VSS.
The internal LDO power supply of the IC needs to add a 1 uF bypass capacitor, and the capacitor should be placed close to the IC.
In addition, reference circuits for EBI, UART, SPI, and Audio are provided.
VDD is connected to 4~32 MHz crystal oscillator, POR33, Power On Control, 5V to 1.5V LDO, IO Cell... and other circuits inside the IC. Among them, GPIO PF.4 to PF.6 and PA.0 to PA.5 output, the high level is equal to VDD.
Vbus is connected to the USB 1.1 PHY inside the IC.
This 1.5V regulator will provide 1.5V for Digital Logic, SRAM, Flash, POR15, LIRC, MIRC, HIRC... and so on.
Vbat is connected to internal 1.5V RTC_LDO and provides 1.5V voltage for RTC, 32.768 kHz crystal oscillator, IO Cell PF.6.
VDDIO is connected to some IO cell for use, and the output high level of PA.0 to PA.5 is equal to VDDIO.
AVDD is connected to the analog circuit inside the IC, and VREF is the reference voltage of the analog circuit.
That's all for the hardware design of the NuMicro M251/M252 series instruction. Thank you for watching it.
If you have further questions, please contact us.
#Tool #Training #Learning #Intermediate #en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/numaker-m251sd
Contact us: SalesSupport@nuvoton.com
Training
Tool
Learning
Watch time - 4:26
Hello everyone, I am Chris, the field application engineer from Nuvoton Technology. Today I will introduce the power modes of the M251/M252 series microcontroller.
The M251/M252 series has multiple power modes. The differentiation is based on power consumption, wake-up time, the operable CPU, and peripherals.
In normal mode, the CPU is running normally. In Idle mode, only the CPU clock is disabled while other peripherals work as usual.
Normal mode and idle mode can be divided into high-efficiency high-speed PL0 mode and low-power low-speed PL3 mode according to CPU operating speed.
We should note that in the low-speed PL3 mode, only the clock source of the CPU and peripherals is 32.768 or 38.4 kHz can run.
In power-down mode, there are three types according to power consumption.
The first is NPD (Normal Power Down Mode). The CPU and high-speed peripherals stop running, and only the low-speed peripherals can work normally.
The second is FWPD (Fast Wake Up Power Down Mode), which is the fastest wake-up of the three power-down modes but consumes more power.
The third is DPD (Deep Power Down Mode), which consumes the lowest power among the three power-down modes, but the data in the RAM cannot be retained, and the wake-up speed is the slowest. Specific peripherals or pins can only activate the wake-up.
For power consumption and wake-up time, we list the corresponding data. Users can choose the most suitable power mode according to the required power consumption and wake-up time.
We need to note that FWPD mode will consume more power in the power-down mode because this mode wakes up the fastest.
The DPD mode is the least power consumption, but the longest wake-up time.,
Also, normal mode is a normal working mode, so there is no need to wake up.
The time unit of the idle mode is different from the power-down mode, which is five cycles. The length of a cycle is determined according to the operating frequency used by the system.
In the related resources section, we provide application notes for power management, which have more detailed operations and descriptions. If you want to know more, please download it from the URL in the video.
There are also various power mode entry and wake-up methods in the BSP package; you can also refer to and use it.
That’s all for the power modes introduction. Thank you for watching it. Please subscribe to our channel for more video resources. If you want to know more information, please contact us.
#Tool #Training #Learning #Intermediate #en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/numaker-m251sd
Contact us: SalesSupport@nuvoton.com
Training
Tool
Learning
Watch time - 2:21
Hello everyone! I am Chris, the Field Application Engineer from Nuvoton Technology.
Today, I will introduce how to run a simple sample code on NuMicro M251/M252 series microcontroller.
First, we connect the M251/M252 NuMaker development Board to the computer.
Then click the M251/M252 BSP folder, click the Sample Code folder, template folder, Keil folder, and finally open the Template project file.
What we are going to do is running a simple GPIO Toggle LED Sample Code.
Introduce the main program briefly.
First, set GPIO PB14 to Output Mode.
After writing a small loop, set PB14 to reverse.
Finally, set CLK_SysTickDelay to 300,000 microseconds (uSec).
Before Rebuild, we must add the GPIO Source Code to the Library, find the corresponding Source Code and load it, and press Rebuild after it is complete. After the Rebuild, press Load and program the Code into the IC.
When programing is over, press the reset button on the development board to confirm whether the LED lights are flashing on the board.
That’s all for the tutorial of running sample code. Thank you for watching it. If you want to know more information, please feel free to contact us.
#Tool #Training #Learning #Intermediate #en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/numaker-m251sd
Contact us: SalesSupport@nuvoton.com
Training
Tool
Learning
Watch time - 5:29
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to use Wi-Fi with Mbed OS on NuMaker-IoT-M487 development board.
First, open Chrome browser, enter the URL https://ide.mbed.com
Please make sure that NuMaker-IoT-M487 board already selected in the upper right corner after you log in. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board.
Click the “New” on the upper left, a “Create new program” window will be displayed. You can see that the Platform has been set to NuMaker-IoT-M487. In the Template field, select the "NuMaker WiFi TCP Example" for this tutorial. Then click OK.
Now you can see that the sample code has loaded on the page. Click on “mbed_app.json” to open it.
In order to use Wi-Fi, you have to configure SSID and password to match your Wi-Fi access point setting. In the mbed_app.json file, the default Wi-Fi security set to WPA and WPA2 in “nsapi.default-wifi-security” field. Please modify the field “nsapi.default-wifi-ssid” to your Wi-Fi SSID
Then modify “nsapi.default-wifi-password” to your Wi-Fi password.
Click on “Compile” to build it.
It is in compiling, please wait a moment.
Then you can see the last message is “Success!” at the bottom of this page.
The browser will download the binary firmware file directly after a successful compiling. It will be saved in a default download folder or the folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”.
Then we connect the NuMaker-IoT-M487 USB port to your computer and make sure the onboard LED lights up.
Let’s back to the download folder where you can see the binary firmware file (NuMaker-mbed-wifi-tcp.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive.
You will see the copying progress dialog box.
Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the demonstration, the “Nu-Link Virtual Com Port” is COMx.
Then use your terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate, 8 bits, 1 stop bit, none parity, and no flow control settings. Then “Open” it.
Press Reset button on board to run again.
You can see the connection messages printed on terminal. It shows the board’s IP address obtained from the Wi-Fi access point, sends a TCP/HTTP connection to server, and the result of return.
That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to know more information, please contact us at SalesSupport@nuvoton.com
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487
Contact us: SalesSupport@nuvoton.com
#Tool #Training #Learning #Intermediate #en
Training
Tool
Learning
Watch time - 3:51
Hello everyone, I am the principal engineer of Nuvoton Technology, Morgan. Today, I will show you how to use Mbed OS on the NuMaker-IoT-M487 development board to control LED and buttons.
First, open Chrome browser, enter the URL https://ide.mbed.com.
Please make sure that NuMaker-IoT-M487 board already selected in the upper right corner after you log in. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board.
Then click the “New” on the upper left, a “Create new program” window will be displayed. You can see that the Platform has been set to NuMaker-IoT-M487. In the Template field, select the "NuMaker GPIO Interrupt with Debounce Setting" for this tutorial. Then click OK.
Now you can see that the sample code has loaded on the page. Click on “main.cpp”, this sample code uses SW2 button for demonstration. Click on “Compile” to build it.
It is in compiling, please wait a moment.
Then you can see a lot of messages at the bottom of the page. The last message is “Success!”
The browser will download the binary firmware file directly after a successful compiling. It will be saved in a default download folder or the folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”.
Then we have to connect the NuMaker-IoT-M487 USB port to your computer and make sure the onboard LED lights up.
Let’s head back to the download folder where you can see the binary firmware file (NuMaker-mbed-GPIO-Interrupt.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive.
You will see the copying progress dialog box.
Next step is to press the SW2 button on the board to toggle LED. You can see the reaction of each press.
That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to know more information, please contact us at SalesSupport@nuvoton.com
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487
Contact us: SalesSupport@nuvoton.com
#Tool #Training #Learning #Intermediate #en
Training
Tool
Learning
Watch time - 8:57
Hello everyone, I am the principal engineer of Nuvoton Technology, Morgan. The development board we are using today is Nuvoton’s NuMaker-IoT-M487. It is powered by the NuMicro M487 microcontroller with Arm Cortex-M4 core, built-in RJ45 Ethernet, and Wi-Fi module allowing users to connect to clouds by wire or wirelessly. It supports several RTOS including Arm Mbed OS, Amazon FreeRTOS, and AliOS Things.
Today, I will show you how to use Mbed OS on the NuMaker-IoT-M487 development board.
First, open Chrome browser, enter the URL https://os.mbed.com to register an account if you don’t have one.
Move the mouse cursor to the human icon in the upper right corner then click “Log in or Sign up” or click “Sign up for free” directly.
Then click “Sign up”
Fill in your e-mail address and relevant information, and finally click Sign up. Check your mailbox to receive the certification letter and authorize it.
Then let’s log in to use the online compiler environment. Move to the human icon in the upper right corner, and then click “Log in or Sign up”. And enter your account and password. After a successful login, it will return to the first page and then click “Compiler” on the left side of the human icon. It will lead us to the online compiler web page.
The following demonstration is all operated on this page
Click “No device selected” in the upper right corner to add and select Nuvoton’s NuMaker-IoT-M487 development board.
It opens the “Select a Platform” page. We click the button, show “Add Board” with green “+”, in the lower-left corner.
Next, it shows the page, let us choose a board.
Scroll down to find NuMaker-IoT-M487, and click it. It opens the NuMaker-IoT-M487 board page (https://os.mbed.com/platforms/NUMAKER-IOT-M487/). Scroll down the page to find the button “+Add to your Mbed Compiler”, and click it.
Click “Compiler” on top of the page to return to the online compiler environment. If the “NuMaker-IoT-M487” small icon appears in the upper right corner, you can start to import a sample code. Otherwise, click “No device selected” again. At this time, you can see the NuMaker-IoT-M487 icon already in the “Select a Platform” dialog box, click the icon to select it and then click “Select Platform” in the upper right corner.
It returns to the online compiler page, and the “NuMaker-IoT-M487” icon shows in the top right corner. You can now start to import a sample code.
First, click “New” on the top left side, a small “Create new program” dialog box appears. The “Platform” selects “NuMaker-IoT-M487” automatically. In the “Template” field, please select “mbed OS Blinky HelloWorld” example code, click OK.
You can see the sample project has been loaded on the page, click “main.cpp” to show the source code. Let’s add a printf() function to print out a string in the main program.
Check if statements are correct, save it, and click “Compile” to build code.
Now it’s compiling, let’s wait for a moment.
And you can see a lot of messages at the bottom of the page. The last message is “Success!”
The browser will download the binary firmware file directly after a successful compiling. It will be saved in a default download folder or any folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”.
Then we need to connect the NuMaker-IoT-M487 USB port to your computer and make sure the onboard LED lights up.
Let’s head back to the download folder where you can see the binary firmware file (mbed-os-example-blinky.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive.
You will see the copying progress dialog box. After the copy is completed, the firmware starts to execute. One LED on board starts blinking. To see the printout message, go on the following steps.
Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the demonstration, the “Nu-Link Virtual Com Port” is COMx.
Then use your terminal tool of choice. Here we use Putty. Open the COMx port with 9600 baud rate, 8 bits, 1 stop bit, none parity, and no flow control settings.
You can see “Hello World!” printed in the terminal.
That’s all for this tutorial. Thank you for watching.
If you want to know more information, please contact us at SalesSupport@nuvoton.com
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487
Contact us: SalesSupport@nuvoton.com
#Tool #Training #Learning #Intermediate #en
Application
Training
Learning
Watch time - 14:15
#en #Learning #Intermediate #application #training
Application
Training
Learning
Watch time - 11:37
#en #Learning #Intermediate #application #training
Application
Training
Learning
Watch time - 6:22
#en #Learning #Intermediate #application #training
Application
Training
Learning
Watch time - 8:34
#en #Learning #Intermediate #application #training