Search
Search Results
SearchHigh Efficiency ,
find 7 items
- Sort by
- Most recent
- Popularity
Product
Others
Watch time - 2:56
The NuMicro M2L31 series is based on Arm Cortex-M23 core featuring 64 to 512 Kbytes ReRAM — an ultra-low-power product designed with a commitment to sustainability and energy efficiency.
More info: https://www.nuvoton.com/products/microcontrollers/arm-cortex-m23-mcus/m2l31-series/?utm_source=youtube&utm_medium=video_ic_intro
#nuvoton #NuMicro #Microcontroller #MCU #M2L31 #UltraLowPower #ReRAM #ArmCortexM23 #Security #PowerEfficiency #USB2.0 #Type-C #PD3.0 #highdensitymemory #CANFD #MCU#Microcontroller #General #Product #Others#en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
buy now: https://direct.nuvoton.com/
contact us: SalesSupport@nuvoton.com
Training
Tool
Learning
Watch time - 0:41
The new-generation Nu-Link2-Pro has debugging functions, ETM tracking, serial data analysis, and USB-to-serial communication bridge. The fast programming speed and convenient firmware upgrade of ISP products allow customers to process more quickly and conveniently at every stage from development to mass production, increasing the development and mass production efficiency. It is an indispensable weapon for engineers' product development and mass production upgrade.
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://bit.ly/3bk0AD8
Contact us: SalesSupport@nuvoton.com
#en #Tool #Training #Intermediate #Learning
Training
Tool
Learning
Watch time - 2:47
#Tool #Training #Learning #Intermediate #en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/numaker-m251sd
Contact us: SalesSupport@nuvoton.com
Training
Tool
Learning
Watch time - 4:26
Hello everyone, I am Chris, the field application engineer from Nuvoton Technology. Today I will introduce the power modes of the M251/M252 series microcontroller.
The M251/M252 series has multiple power modes. The differentiation is based on power consumption, wake-up time, the operable CPU, and peripherals.
In normal mode, the CPU is running normally. In Idle mode, only the CPU clock is disabled while other peripherals work as usual.
Normal mode and idle mode can be divided into high-efficiency high-speed PL0 mode and low-power low-speed PL3 mode according to CPU operating speed.
We should note that in the low-speed PL3 mode, only the clock source of the CPU and peripherals is 32.768 or 38.4 kHz can run.
In power-down mode, there are three types according to power consumption.
The first is NPD (Normal Power Down Mode). The CPU and high-speed peripherals stop running, and only the low-speed peripherals can work normally.
The second is FWPD (Fast Wake Up Power Down Mode), which is the fastest wake-up of the three power-down modes but consumes more power.
The third is DPD (Deep Power Down Mode), which consumes the lowest power among the three power-down modes, but the data in the RAM cannot be retained, and the wake-up speed is the slowest. Specific peripherals or pins can only activate the wake-up.
For power consumption and wake-up time, we list the corresponding data. Users can choose the most suitable power mode according to the required power consumption and wake-up time.
We need to note that FWPD mode will consume more power in the power-down mode because this mode wakes up the fastest.
The DPD mode is the least power consumption, but the longest wake-up time.,
Also, normal mode is a normal working mode, so there is no need to wake up.
The time unit of the idle mode is different from the power-down mode, which is five cycles. The length of a cycle is determined according to the operating frequency used by the system.
In the related resources section, we provide application notes for power management, which have more detailed operations and descriptions. If you want to know more, please download it from the URL in the video.
There are also various power mode entry and wake-up methods in the BSP package; you can also refer to and use it.
That’s all for the power modes introduction. Thank you for watching it. Please subscribe to our channel for more video resources. If you want to know more information, please contact us.
#Tool #Training #Learning #Intermediate #en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/numaker-m251sd
Contact us: SalesSupport@nuvoton.com
Training
Tool
Learning
Watch time - 3:24
Hello everyone I am Chris, the Field Application Engineer from Nuvoton Technology.
Today I will introduce the programming and debugging tool, called NuLink-Gang, and NuLink2-Pro. And I will show you in what kind of situation you can utilize the tools.
During system development, Nuvoton provides three IDE interfaces: KEIL, IAR, and NuEclipse for user to develop source code.
When programming the Chip, Nuvoton provides ICP programming Tool in PC and the debugger Nu-Link2-Pro for users to perform debugging and programming function.
User who uses all of the Nuvoton Nu-Maker boards series can develop through the Nu-Link2-Me debugger and programmer; it’s attached to the board.
During the mass-production stage, there are 2 modes for programming the target chip. One is online programming and the other is offline programming.
At first, in online programming mode, user can use ICP programming Tool and a Nu-Link2-Pro to program a target chip. Besides, if it needs to program several chips at one times, the Nu-Link Command Tool supports program multiple develop board by several Nu-Link2-Pro.
Nu-Link2-Pro also supports drag-and-drop Flash programming. User can intuitively complete the programming action.
Nu-Link2-Pro
In offline programming mode, user can pre-store the programming file in SPI flash, USB flash drive, or SD card. When user wants to program the target chip, pressing the programming button on Nu-Link2-Pro to complete the programming action.
If it needs a large number of ICs to be programming, it recommends using the Nu-Link-Gang programmer. Nu-Link-Gang programmer can perform offline programming on four different chips at a time, significantly increasing the programming efficiency. Besides, Nu-Link-Gang programmer can also use the control bus to connect with an automatic programming machine for automatic programming.
In the system upgrade, Nu-Link2-Pro also provides five standard communication interfaces such as SPI, I2C, UART, RS485, and CAN for transmission, which is convenient for users to upgrade the system.
That’s all for the introduction of Nuvoton’s programming and debugging tool, NuLink-Gang, and NuLink2-Pro. Thank you for watching it. If you want to know more details, please contact us! Thank you.
#Tool #Training #Learning #Intermediate #en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/numaker-m251sd
Contact us: SalesSupport@nuvoton.com
Watch time - 3:32
The NAU82011YG is a highly efficient, filter-free, mono Class-D audio amplifier with variable gain, which is capable of driving a 4Ω load with up to 2.9W output power. This device provides chip enable pin with extremely low standby current and fast start-up time of 4ms.
The NAU82011YG is ideal for battery driven portable applications. NAU82011YG features 91% efficiency, low quiescent current (i.e. 1.25mA at 3.6V) and superior EMI performance. The audio input of this device can be configured as either single-ended or differential input mode.
Target Applications:
• Portable Audio Device/Speaker
• Portable Navigation Device
• Tablet PC
Key Features:
• Audio Input
- Differential / Single-end input
- DC PSRR Typ.@95dB
- CMRR Typ.@63dB
• Audio Output
- Powerful Mono Class-D Amplifier
- 2.9W (4Ω @ 5V, 10% THD+N)
- 2.3W (4Ω @ 5V, 1% THD+N)
- Low Output Noise: 20 μVRMS
• Advance Feature
- Low Current Shutdown Mode
- Click-and Pop Suppression
- Integrated Image Reject Filter
- Integrated feedback resistor of 300 kΩ
• Operating Characteristics
- voltage range: 2.5 V to 5.5 V
- Temperature range: -40°C to 85°C
- Low Quiescent Current: 1.2mA@3.6V, 1.7mA@5V
• Package
- WLCPS-9
Watch time - 4:59
Secure Smart Metering Communication Reference Design
Hi everybody, today we are going to introduce a reference design of Smart-Metering communication card based on NuMicro M2351 Series microcontroller. You can find useful security features based on the Arm Cortex-M23 CPU core with Nuvoton’s in-house technology integration.
The auto-metering is an infrastructure for automatic, remotely, wire or wireless meter data reading. It’s highly possible to be intervened if there is no security mechanism. That is a very typical IoT security issue in the IoT era.
In many countries, there are a lot of Auto-Metering Infrastructure (AMI) projects being undertaken by main electricity power companies worldwide. Most projects start from upgrading the communication modem cards as the first step rather than retiring the meters. The modem card can play as a gateway to monitor the incorrect device operation and data transmission security. Issues of modem card security are covering:
First, a limited performance due to crypto computation efficiency
Second, speed limitation due to interface choice
The third, cost burden due to extra hardware modules for different communication protocols
Nuvoton’s reference design of Secure Smart Meter Communication is an end-to-end security solution for AMI. With the collaboration with SPI-Korea, the solution incorporates a lot of advantages such as TrustZone security for firmware, a range of interfaces for device communication, secure over-the-air firmware update, and remote management. With the complete hardware specification of M2351, a security software company, SPI-Korea, can easily implement their secure AMI solution for modem card which connects meters and cloud servers. M2351 also contributes the crypto acceleration during the cryptographic computing in order to save CPU time for different communication protocol modules by its powerful hardware functionalities during message transmission outside of a microcontroller unit.
SPI-Korea has developed a range of Armv8-M TrustZone based technologies. Her expertise covers Boot Manager, Key Manager, and Device Manager, which is very useful for microcontroller security and certainly shows the stability of a microcontroller device. Also, they are certified by Korea Electricity Company. We hope this successful experience can be further adopted in other areas worldwide because it’s a secure, accurate and environmentally safe solution for AMI.
This slide is a picture for SPI-Korea AMI modem card design. NuMicro Family microcontrollers can be utilized for designs of auto-metering infrastructure devices. We start from AMI modem card and we are confident to support meters of any next-generation of AMI. We now integrate M23-based microcontroller with M4-based or Arm9-based microcontroller as a proposal for next-generation modem card of Korea AMI and we hope to provide high-performing cost-effective solution for all AMI devices in the future.
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
contact us: SalesSupport@nuvoton.com